178 research outputs found

    Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation.

    Get PDF
    Exposure to high levels of ionizing radiation (IR) leads to debilitating and dose-limiting gastrointestinal (GI) toxicity. Using three-dimensional mouse crypt culture, we demonstrated that p53 target PUMA mediates radiation-induced apoptosis via a cell-intrinsic mechanism, and identified the GSK-3 inhibitor CHIR99021 as a potent radioprotector. CHIR99021 treatment improved Lgr5+ cell survival and crypt regeneration after radiation in culture and mice. CHIR99021 treatment specifically blocked apoptosis and PUMA induction and K120 acetylation of p53 mediated by acetyl-transferase Tip60, while it had no effect on p53 stabilization, phosphorylation or p21 induction. CHIR99021 also protected human intestinal cultures from radiation by PUMA but not p21 suppression. These results demonstrate that p53 posttranslational modifications play a key role in the pathological and apoptotic response of the intestinal stem cells to radiation and can be targeted pharmacologically

    The safety of over-the-counter niacin. A randomized placebo-controlled trial [ISRCTN18054903]

    Get PDF
    BACKGROUND: Niacin is widely available over the counter (OTC). We sought to determine the safety of 500 mg immediate release niacin, when healthy individuals use them as directed. METHODS: 51 female and 17 male healthy volunteers (mean age 27 years SD 4.4) participated in a randomized placebo-controlled blinded trial of a single dose of an OTC, immediate-release niacin 500 mg (n = 33), or a single dose of placebo (n = 35) on an empty stomach. The outcomes measured were self-reported incidence of flushing and other adverse effects. RESULTS: 33 volunteers on niacin (100%) and 1 volunteer on placebo (3%) flushed (relative risk 35, 95% confidence interval (CI) 6.8–194.7). Mean time to flushing on niacin was 18.2 min (95% CI: 12.7–23.6); mean duration of flushing was 75.4 min (95% CI: 62.5–88.2). Other adverse effects occurred commonly in the niacin group: chills (51.5% vs. 0%, P < .0001), generalized pruritus (75% vs. 0%, P = <.001), gastrointestinal upset (30% vs. 3%, P = .005), and cutaneous tingling (30% vs. 0%, P = <.001). Six participants did not tolerate the adverse effects of niacin and 3 required medical attention. CONCLUSION: Clinicians counseling patients about niacin should alert patients not only about flushing but also about gastrointestinal symptoms, the most severe in this study. They should not trust that patients would receive information about these side effects or their prevention (with aspirin) from the OTC packet insert

    Effects of two contrasting canopy manipulations on growth and water use of London plane (Platanus x acerifolia) trees

    Get PDF
    Aims: Two contrasting canopy manipulations were compared to unpruned controls on London plane trees, to determine the effects on canopy regrowth, soil and leaf water relations. Methods: ‘Canopy reduction’, was achieved by removing the outer 30 % length of all major branches and ‘canopy thinning’, by removing 30 % of lateral branches arising from major branches. Results: Total canopy leaf areas recovered within two and three years of pruning for the canopy-thinned and reduced trees respectively. Canopy reduction increased mean leaf size, nitrogen concentration, canopy leaf area density and conserved soil moisture for up to 3 years, whereas canopy thinning had no effects. Another experiment compared more severe canopy reduction to unpruned trees. This produced a similar growth response to the previous experiment, but soil moisture was conserved nearer to the trunk. Analysis of 13C and 18O signals along with leaf water relations and soil moisture data suggested that lower boundary layer conductance within the canopy-reduced trees restricted tree water use, whereas for the canopy-thinned trees the opposite occurred. Conclusions: Only canopy reduction conserved soil moisture and this was due to a combination of reduced total canopy leaf area and structural changes in canopy architecture

    A multilevel examination of gender differences in the association between features of the school environment and physical activity among a sample of grades 9 to 12 students in Ontario, Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Creating school environments that support student physical activity (PA) is a key recommendation of policy-makers to increase youth PA. Given males are more active than females at all ages, it has been suggested that investigating gender differences in the features of the environment that associate with PA may help to inform gender-focused PA interventions and reduce the gender disparity in PA. The purpose of this cross-sectional study was to explore gender differences in the association between factors of the school environment and students' time spent in PA.</p> <p>Methods</p> <p>Among a sample of 10781 female and 10973 male students in grades 9 to 12 from 76 secondary schools in Ontario, Canada, student- and school-level survey PA data were collected and supplemented with GIS-derived measures of the built environment within 1-km buffers of the 76 schools.</p> <p>Results</p> <p>Findings from the present study revealed significant differences in the time male and female students spent in PA as well as in some of the school- and student-level factors associated with PA. Results of the gender-specific multilevel analyses indicate schools should consider providing an alternate room for PA, especially for providing flexibility activities directed at female students. Schools should also consider offering daily physical education programming to male students in senior grades and providing PA promotion initiatives targeting obese male students.</p> <p>Conclusions</p> <p>Although most variation in male and female students' time spent in PA lies between students within schools, there is sufficient between-school variation to be of interest to practitioners and policy-makers. More research investigating gender differentials in environment factors associated with youth PA are warranted.</p

    Evolutionary Descent of Prion Genes from the ZIP Family of Metal Ion Transporters

    Get PDF
    In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo. A subsequent bioinformatic analysis revealed the unexpected presence of a PrP-like amino acid sequence within the N-terminal, extracellular domain of a distinct sub-branch of the ZIP protein family that includes ZIP5, ZIP6 and ZIP10. Additional structural threading and orthologous sequence alignment analyses argued that the prion gene family is phylogenetically derived from a ZIP-like ancestral molecule. The level of sequence homology and the presence of prion protein genes in most chordate species place the split from the ZIP-like ancestor gene at the base of the chordate lineage. This relationship explains structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The phylogenetic and spatial connection to ZIP proteins is expected to open new avenues of research to elucidate the biology of the prion protein in health and disease

    Rab protein evolution and the history of the eukaryotic endomembrane system

    Get PDF
    Spectacular increases in the quantity of sequence data genome have facilitated major advances in eukaryotic comparative genomics. By exploiting homology with classical model organisms, this makes possible predictions of pathways and cellular functions currently impossible to address in intractable organisms. Echoing realization that core metabolic processes were established very early following evolution of life on earth, it is now emerging that many eukaryotic cellular features, including the endomembrane system, are ancient and organized around near-universal principles. Rab proteins are key mediators of vesicle transport and specificity, and via the presence of multiple paralogues, alterations in interaction specificity and modification of pathways, contribute greatly to the evolution of complexity of membrane transport. Understanding system-level contributions of Rab proteins to evolutionary history provides insight into the multiple processes sculpting cellular transport pathways and the exciting challenges that we face in delving further into the origins of membrane trafficking specificity

    Alliance of Genome Resources Portal: unified model organism research platform

    Get PDF
    The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource

    Alliance of Genome Resources Portal: unified model organism research platform

    Get PDF
    The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource
    corecore